
Teacher Guide
Cambridge IGCSE® and Cambridge O Level
Computer Science

0478 and 2210

Cambridge Secondary 2

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are
permitted to copy material from this booklet for their own internal use. However, we cannot give permission
to Centres to photocopy any material that is acknowledged to a third party even for internal use within a
Centre.

® IGCSE is the registered trademark of Cambridge International Examinations.

© Cambridge International Examinations November 2014

Contents

Introduction ... 3
The purpose of this teacher guide
What do I need to get started?

Section 1: Syllabus overview ... 4
1.1 Aims
1.2 Curriculum content
1.3 Assessment objectives

Section 2: Planning the course .. 7
2.1 Benefi ts of planning
2.2 Long-term planning
2.3 Medium-term planning (creating a scheme of work)
2.4 Short-term planning (creating lesson plans)
2.5 Refl ection and evaluation of learning
2.6 Flexibility

Section 3: Classroom practice ... 11
3.1 Active learning
3.2 Practical learning
3.3 Adapting to different learning styles

Section 4: Preparing learners for fi nal assessment .. 15
4.1 Use of past papers, mark schemes and principal examiner reports
4.2 Paper 1 – theory of computer science
4.3 Paper 2 – problem solving and programming
4.4 Command words used in examination questions

Section 5: Resources ... 18
5.1 Teacher support
5.2 Finding resources
5.3 Training and professional development for teachers

Appendices .. 20
Appendix A: Sample long-term plan
Appendix B: Sample scheme of work Unit 2
Appendix C: Sample scheme of work 2, Unit 8
Appendix D: Sample lesson plan 1
Appendix E: Sample lesson plan 2
Appendix F: Sample lesson plan template

2 Cambridge IGCSE and Cambridge O Level Computer Science

Introduction

3 Cambridge IGCSE and Cambridge O Level Computer Science

Introduction

The purpose of this teacher guide
This teacher guide is designed to introduce you to the Cambridge IGCSE (0478) and Cambridge O Level
(2210) Computer Science syllabuses and the related support materials available from Cambridge. It will help
you to organise and plan your teaching. It also offers advice and guidance on teaching strategies, how to
develop your learners’ programming skills and how to prepare your learners for the fi nal assessment.

What do I need to get started?
When planning your course, your starting point should be the syllabus. This contains information not only
on the curriculum content but also the overall aims and assessment objectives. It gives details of the two
papers, the grade descriptions and additional information. It is most important that you become thoroughly
familiar with all parts of the syllabus document.

You will then need to devise a scheme of work. To do this, you need to think how you will organise the
time that you have available to help learners to understand and learn all of the facts and concepts required
by the syllabus, and to develop the necessary skills (such as programming). Cambridge provides a sample
scheme of work that you could use as a starting point but you will undoubtedly want to produce your own
at some point. (Extracts of the Cambridge published scheme of work are included in appendices B and C of
this guide.)

Your scheme of work will help you to determine what resources you will require to deliver the course and
this will help you to build up teaching, learning and reference resources such as text books, worksheets and
sample programs.

You should make sure at an early stage that you have access to our secure online support for Cambridge
teachers called Teacher Support, http://teachers.cie.org.uk. This provides a wide range of resources to help
you, including past examination papers, mark schemes, examiner reports, example candidate responses,
a resource list and community resources. All of these are invaluable in helping you and your learners to
understand exactly what Cambridge expects of candidates in examinations, and will help you to prepare
your learners appropriately.

Here is a checklist to help you get started.

Checklist

• Have you read the syllabus and checked that it is for the correct year?
• Have you looked at the Cambridge website and Teacher Support?
• What support materials are you going to use?
• What local resources are available to use?
• What school resources are available to use?

Section 1: Syllabus overview

4 Cambridge IGCSE and Cambridge O Level Computer Science

Section 1: Syllabus overview

1.1 Aims
The Cambridge IGCSE and Cambridge O Level Computer Science syllabus aims are to develop:

• computational thinking, that is to say thinking about what can be computed and how, and includes
consideration of the data required

• understanding of the main principles of solving problems by using computers

• understanding that every computer system is made up of sub-systems, which in turn consist of further
sub-systems

• understanding of the component parts of computer systems and how they interrelate, including
software, data, hardware, communications and people

• skills necessary to apply understanding to solve computer-based problems using a high-level
programming language.

Computer science is the study of the principles and practices of computation and computational thinking
and their application in the design and development of computer systems. This syllabus aims to encourage
candidates to develop computational thinking, that is thinking about what can be computed and how, and
includes consideration of the data required. Learning computational thinking involves learning to program (to
write computer code) which is the means by which computational thinking is expressed.

The assessment is by written papers, but the learning should be done in a mainly practical way: problem
solving and programming. Questions will require the candidate to think, use knowledge with understanding
and demonstrate understanding gained through practising practical skills. Questions will not revolve around
pure recall.

1.2 Curriculum content

Sections Topics

Section 1
Theory of Computer Science

1.1 Data representation
1.2 Communication and Internet technologies
1.3 Hardware and software
1.4 Security
1.5 Ethics

Section 2
Practical Problem-solving and
Programming

2.1 Algorithm design and problem-solving
2.2 Programming
2.3 Databases

Section 6 of the syllabus lists the content of the curriculum. It is here that you will fi nd details of exactly
what your learners will need to know, to understand and be able to do when they sit the examination papers
at the end of the course. The content is presented as a series of topics.

For section 1 each topic is divided into sub-topics that show what is to be taught, how it is to be taught and
the computational uses required.

Section 1: Syllabus overview

5 Cambridge IGCSE and Cambridge O Level Computer Science

For section 2 each topic is divided into sub-topics that show what is to be taught and the practical skills that
are to be developed.

1.3 Assessment objectives
The Assessment Objectives (which can be found in section 5.2 of the syllabus) are statements about what
will actually be tested in the fi nal examinations. Each question or task that is set in the examination relates to
one or more of these Assessment Objectives (AOs).

There are three Assessment Objectives:

AO1 Knowledge with understanding
Candidates should be able to:

• recall, select and communicate knowledge and understanding of computer technology

Knowledge and understanding are clearly linked. Learners may, for instance, be able to recall the description
of a computer virus as ‘self-replicating code’. If, however, they do not understand what this means, they may
not be able to answer questions which are based on the concept of a virus but do not use the exact words.

The second assessment objective includes application. It is stated in the syllabus as:

AO2 Application
Candidates should be able to:

• apply knowledge, understanding and skills to solve computing or programming problems

The ability to apply knowledge is a key skill in computer science. Learners need to be able to identify and
solve problems in logical manner. They must be able to write and interpret algorithms using pseudocode,
fl owcharts and a high-level programming language.

In order to develop the skill of programming, learners need plenty of practice in writing programs in a high
level programming language. Learners may use a high-level programming language of their choice; no
particular programming language will be assumed in this syllabus. Centres may wish to decide the high-level
programming language that will be used by all the learners. This could depend upon the software available
and the expertise of the teachers.

AO3 Evaluation
Candidates should be able to:

analyse, evaluate, make reasoned judgements and present conclusions.

It takes time and a considerable amount of practice to develop the skills of analysis, evaluation and making
reasoned judgements. You can help your learners build up these skills in a variety of ways. These include:

• asking learners to make short presentations in which they consider for example, whether to use a high-
level programming language or a low-level programming language to provide a solution to a problem and
make a recommendation having considered the requirements of the solution

• providing algorithms showing different solutions for the same problem and asking learners to discuss
the effectiveness of the solutions

• setting past questions for learners to answer.

Section 1: Syllabus overview

6 Cambridge IGCSE and Cambridge O Level Computer Science

1.4 Assessment structure
Candidates sit two papers. Paper 1 tests the theory of computer science. The duration of the paper is 1 hour
45 minutes. It has a weighting of 60% of the total available marks.

Paper 2 tests problem-solving and programming, it consists of two sections. In section A, there is one
question set on the pre-release material issued a few months before the examination. The duration of the
paper is 1 hour and 45 minutes and has a weighting of 40% of the total available marks.

Components Weighting

Paper 1 Theory 1 hour 45 minutes
This written paper contains short-answer and structured questions. All questions
are compulsory.

No calculators are permitted in this paper.

75 marks

Externally assessed.

60%

Paper 2 Problem-solving and Programming 1 hour 45 minutes
This written paper contains short-answer and structured questions. All questions
are compulsory. 20 of the marks for this paper are from questions set on the
pre-release material.

No calculators are permitted

50 marks

Externally assessed.

40%

The testing of the Assessment Objectives is distributed across the two papers as shown in the table below.
Both papers assess all three AOs.

Assessment objective Paper 1 Paper 2 Weighting for
qualifi cation

AO1 32% 8% 40%

AO2 16% 24% 40%

AO3 12% 8% 20%

Total 60% 40% 100%

Section 2: Planning the course

7 Cambridge IGCSE and Cambridge O Level Computer Science

Section 2: Planning the course

This section fi rst considers the benefi ts of planning; it then explores the process of planning on three levels,
each of increasing detail. These include planning the overall course, planning the schemes of work (i.e. the
teaching units) and planning the individual lessons. Examples of schemes of work, two lesson plans and a
lesson plan template are provided in the appendices, to illustrate the principles explained in this guide.

2.1 Benefi ts of planning
Planning provides a number of signifi cant benefi ts. These include:

• increasing the likelihood that all aspects of the syllabus will be covered

• helping to develop a logical structure to the course

• making you think about creating a variety of activities in lessons

• helping you build in formative and summative assessment. Formative assessment occurs throughout
the course and infl uences subsequent teaching and learning. It involves gathering information on what
learning is taking place through, for instance, marking class work and homework and feeding back
to learners on their performance. Summative assessment establishes what progress a learner has
achieved. It is often used to report to other institutions and to parents.

2.2 Long-term planning
The purpose of the long-term plan is to set out a framework that ensures the whole syllabus (including the
development of the AO2 and AO3 skills) is covered within the time that you have available.

Each Centre will need to consider a number of factors in the light of its particular circumstances. These
include:

• the amount of teaching time available for the whole duration of the course (IGCSE and O Level
syllabuses are designed on the assumption that learners have about 130 guided learning hours* over the
duration of a two year course)

• the number and length of lessons that you expect to have available (remember to take into account time
lost to internal examinations or other activities that will take learners away from your lessons)

• the number of lessons available for practical work in a computing laboratory

• taking account of any prior knowledge learners may have

• whether you are sharing the teaching with a colleague or colleagues

• the homework policy of your educational establishment

• the assessment policy of your educational establishment, including when you can set mock
examinations and when the Cambridge examinations will fall.

‘Guided learning hours’ refers to the time that the learner spends being directly taught by the teacher, or
carrying out supervised work or directed study. In addition, learners will need to spend some time in private
study.

All of these factors vary greatly between Centres. It is therefore most important that you develop your plans
to suit your particular circumstances.

Section 2: Planning the course

8 Cambridge IGCSE and Cambridge O Level Computer Science

You will almost certainly fi nd that you need to review your long-term plan each year. You will need to take
account of any technical updates that have been published for the next year to take account of emerging
technologies relevant to the computer science syllabus content. There may be changes in the hardware
and software available in your school for learners. You may fi nd that some topics took you longer than
expected, while others were covered more quickly. You may decide to change the sequence in which you
originally taught certain topics, perhaps because it became clear that learners needed to acquire more
underlying knowledge and understanding before they were able to deal effectively with a particular set of
learning objectives. However, the order of the syllabus in this particular subject does lend itself largely to a
good order of teaching. Ideally, all teachers within the computer science department should be involved in
reviewing how well the long-term plan is working and suggesting how it could be improved.

2.3 Medium-term planning (creating a scheme of work)
A scheme of work should indicate how you intend to cover all the learning outcomes. It should contain
suggested teaching activities and related learning resources. It should also contain details of how you will
help learners develop the AO2 and AO3 skills in the syllabus.

Key factors to consider when planning your scheme of work:

• the order of teaching. You do not have to follow the syllabus in order but many teachers do so as it has
a logical structure, building skills and knowledge in a clear hierarchy and preparing learners for future
learning

• the abilities of your learners. This will infl uence the pace at which you cover the course and the activities
you use. If you have a mixed ability group, and most classes do include a range of abilities, you will need
to develop some differentiated tasks (more on this in section 3.3 below)

• teaching style. You will have your own teaching style and your scheme of work should refl ect this

• programming skills. You will be skilled in writing programs in certain high-level languages and your
scheme of work should refl ect this

• the resources available to you. There will be some resources you can access straight away and other
resources you will build up over time

• assessment opportunities. You need to build in opportunities to assess the learners’ progress at regular
intervals and gauge their understanding of key concepts and common errors related to these

• opportunities for cross-curricular links

• practical programming and other computer based activities

• suggested homework and extension activities

• building in fl exibility (more on this in section 2.6 below)

• working with other teachers to plan a scheme of work, collaborative documents can be easily prepared
using the Internet

Cambridge provides a sample scheme of work on the secure online support facility for Cambridge teachers,
Teacher Support, http://teachers.cie.org.uk. (You will need a password, obtainable from your Examinations
Offi cer, to get access to the website.) Extracts from this published scheme of work are provided in
Appendices B and C; it is important to understand that this scheme of work is intended only as an example,
and you are not obliged to follow it. Each educational establishment will wish to develop their own scheme
of work, to suit their particular circumstances and their own learners. It is always good practice to involve
everyone in the department in the construction of the scheme of work.

Section 2: Planning the course

9 Cambridge IGCSE and Cambridge O Level Computer Science

2.4 Short-term planning (creating lesson plans)
A short-term plan is an outline of what you intend to do in a particular lesson, or perhaps a small group of
lessons. You may decide to plan lessons on a weekly basis. In practice, it is unlikely that you will have the
time to plan all lessons in great detail. It is, nevertheless, worth planning key lessons in depth. Such lessons
may include those which start a new topic, those which introduce a new skill and any areas in which you are
going to be observed.

Key factors to consider when planning lessons:

• what you want the learners to be able to do by the end of the lesson – what learning you want to have
taken place and what skills you want learners to have developed (AO2 and AO3)

• the benefi ts of recapping the learning achieved in the previous lesson and outlining the learning
objectives

• how you are intending to help learners to achieve these goals

• how you will start and end the lesson

• what activities are to be used. Variety can create interest, keep learners alert, draw on and develop a
range of skills

• how you will ensure that all learners, no matter what their ability, will be suitably stretched and occupied
throughout the lesson

• what resources you will need (e.g. worksheets, computing resources, video clips, etc.)

• the approximate timings you expect each stage of the lesson to take

• how to assess what learning has taken place

• the benefi ts of recapping the key points at the end of the lesson.

You can fi nd sample lesson plans in appendices D and E of this guide. Most of the categories in the
template provided are self-explanatory but you may want to clarify the difference between the following
items:

Teaching aims

Teaching aims are the general aims you set for yourself to achieve during the lesson.

Lesson objectives

Lesson objectives are what you are aiming for the learners to be able to do by the end of the lesson. You
may wish to share the lesson objectives with the learners by writing them on the board at the start of the
lesson. You might also ask them at the end of the lesson whether they think the objectives have been
achieved.

Syllabus assessment objectives

These are based on a combination of the assessment objectives and the curriculum content from the
syllabus.

The aims and objectives are clearly connected. They are designed to set targets for you and the learners and
to link these to the syllabus.

Section 2: Planning the course

10 Cambridge IGCSE and Cambridge O Level Computer Science

2.5 Refl ection and evaluation of learning
A lesson plan should provide the opportunity for you to review how the lesson went. There are a number of
questions you may wish to consider:

• What lesson activities went well?

• Why did they go well?

• Were all learners fully involved?

• What did not go well?

• What were the reasons why they did not go well?

• Were all the aims and objectives achieved?

You may also want to ask another teacher, on occasions, to observe one of your lessons to receive feedback
and you could give out a learner questionnaire asking, for instance, which activities they have enjoyed and
whether they are fi nding the feedback on their class work and homework useful.

2.6 Flexibility
A plan is a useful guide but it must not restrict what you do. You must be prepared to adapt the plan in the
event of any changes in the infl uencing factors, availability of computing equipment and the rate of progress
of learners. For instance, new learners may join part way through the course or teaching hours may be lost
due to illness or bad weather.

Changes in the technology available for learners to use may provide an opportunity to explore particular
topics. For example, if there are new computer screens being installed in your educational establishment,
you may want to devote some lesson time to exploring the principles of operation and the benefi ts and
limitations of the new screens when they have just arrived. You may also want to change the order of the
coverage of the course if materials become available for use. For example, if old or non-working equipment
is to be disposed of, learners can use this to investigate how a computer works on the inside.

How your learners are progressing is probably the main reason why you may need to adapt your planning.
If the learners are fi nding some topics easier than expected whilst others more diffi cult, you may need to
devote less time to the former and more time to the latter. You may also discover that certain activities work
well with the learners whilst they are less responsive to other activities and this response may change from
year to year.

Section 3: Classroom practice

11 Cambridge IGCSE and Cambridge O Level Computer Science

Section 3: Classroom practice

3.1 Active learning
Active learning is about learners being engaged in their own learning rather than simply being the passive
recipients of knowledge as supplied by you. They are involved in a variety of activities that involve thinking,
doing and talking, and develop their understanding of a topic by placing it in a variety of contexts.

Cambridge syllabuses aim to produce learners who are actively involved in their own learning. They should
become self-confi dent computer scientists, able to identify and design solutions to problems. They should
take an informed interest in the wide range of important computer-related issues in today’s world.

Active learning will help to achieve these aims. Active learning techniques also increase learners’ enjoyment
of learning. Research shows that active learning is associated with much higher retention rates. Typical
learner retention rates for different types of learning activities are illustrated in the ‘learning pyramid’.

Teach others: 90%

Practise doing: 75%

Discussion: 50%

Demonstration: 30%

Audiovisual: 20%

Reading: 10%

Lecture

Learners should always have to process information. This can be achieved in a relatively straightforward
way.

For example:

• you could ask learners to research sensors by referring them to a textbook or website

• you could write up the different types of sensors they have found on the board

• and then ask them, in groups, to consider what you could use a particular type of sensor for and why it
would be appropriate.

Some teachers worry that giving learners more responsibility for their own learning will take too long.
However, it can actually save time and more crucially, it can prove to be a better use of time.

Section 3: Classroom practice

12 Cambridge IGCSE and Cambridge O Level Computer Science

There are a number of ways you can promote active learning. These include:

• question and answer sessions. This is a quick way of assessing learner understanding

• group discussions. These are more productive if you ask learners to research a topic beforehand. On
some occasions, you can tell different learners to research different parts of the same topic for example
some to research inkjet printers and others to research laser printers, whilst on other occasions, you
could have open discussions

• presentations. These are particularly useful later in the course. A group of two or three learners can
be instructed to research a topic for example copyright issues. Having given the presentation, the group
could be required to answer questions from the class

• wall displays. Learners will learn as they are producing wall displays, and their presence in a classroom
can make it attractive and can reinforce learning

• worksheets. These are a traditional way of getting learners involved in their learning. You can build
these up over time and you might decide to produce some extension questions. As the course
progresses, these worksheets should become more challenging. As well as reinforcing learning,
worksheets should enable you to assess learning and help students prepare for the examination papers

• role playing. This type of activity might be carried out two or three times later in the course. There are
a number of topics which might be explored using this approach. For example, ‘the fetch-execute cycle’
can be demonstrated by giving different learners the roles of the registers and addresses used, and by
working through what happens to a short program. Learners could either be given briefi ng sheets on
their roles or asked to produce them. This could follow the use of Little Man Computer (LMC) download:
http://gcsecomputing.org.uk/lmc/lmc.html

• structured examination type questions. These can be used in a variety of ways. At the start of the
course, you can get learners to work on these in pairs or groups.

Cambridge offers online tutor-led courses in this and other subjects where you can share teaching strategies
and discover ideas for active learning in discussion with other teachers and the course tutor. It is a good
place to tackle any diffi culties you may have delivering a particular area or topic of the syllabus. Check
the Cambridge website events pages to fi nd out when courses are available and to register for them
www.cie.org.uk/events

3.2 Practical learning
Programming is a skill that needs to be learnt and then practised regularly. Learners need at least weekly
access to a computer in order to develop and practice programming skills. Whilst working in pairs may help
to build confi dence for the fi rst few lessons, learners should aim to be able to confi dently write, develop and
test a program by themselves before the end of the course.

The choice of high-level programming language will depend upon the skill base of the teacher and the
resources available. There are many suitable high-level programming languages that can be used, such as
Visual Basic, Pascal/Delphi or Python. If your learners have not attempted programming before they start
on the course then the concept of program writing could be introduced by using Scratch to code simple
programs. There are many free resources available for teaching programming, including software and
tutorials to download.

Before using any resources, free or purchased, with your learners; you should test them out on the hardware
that is going to be used by your learners, to ensure that they work as expected and there are no problems.
Using untried software with learners can bring up many different problems that may prevent learning taking
place.

Section 3: Classroom practice

13 Cambridge IGCSE and Cambridge O Level Computer Science

Tutorials also need testing and probably editing before use by your learners to ensure that:

• the instructions to be followed work

• the English used is suitable for learners whose fi rst language is not English

• the tutorials cover what is required by the syllabus

• programs are tested with suitable test data

There are other computer science skills for your learners to practice during this course. Opportunities should
be provided on a regular basis to recognise what skills should be applied to a problem and how to use these
skills, for example:

• conversion between binary, denary and hexadecimal

• creation of logic circuits and production of truth tables

• devising algorithms to solve problems

• setting out these algorithms in standard ways using fl owcharts and pseudocode

• systematically testing algorithms, showing the results in trace tables

• devising test data for testing

3.3 Adapting to different learning styles
All groups, to a certain extent, are of mixed ability and the ability of learners obviously changes over time.
By encouraging active learning, it is possible to set work which will challenge the most able and will bring
on the skills of those who might, initially, be struggling with the subject. Group work can be particularly
useful. More able learners can benefi t from being in a group which includes less able learners as they will
learn by explaining points to their colleagues. Less able learners will benefi t from having points explained by
someone of a similar age.

The technique for dealing with mixed abilities is known as ‘Differentiation’. This method enables you to
ensure that every individual learner in your class, no matter what their ability, is involved in tasks that are
suitable for them, and that will enable them to make good progress. This is particularly important if you have
a wide ability range in your class. You will need to think about how you can make sure that your brightest
learners are being fully stimulated and stretched, while the least able can still feel fully engaged with the
lesson, and make confi dent progress.

Differentiated work can be achieved in a variety of ways. Let’s see how the technique might be applied to
the ideas listed for active learning above:

• question and answer sessions. Target some questions to particular learners. You can mix these with
questions thrown open to all those in the class

• group activities. You might start by dividing the class into a number of smaller groups and requesting
that they try to complete a task. For example, they could fi nd errors in a program or fl owchart. You
could listen to each group and ask each one to report to the whole class. If some learners are shy of
speaking in public or less confi dent with the topic, you might decide to appoint a spokesperson for each
group and give the role to the more confi dent learner. Over time you could share the role between two
members in the group

• presentations. Different roles could be assigned. One learner might have the main responsibility for
researching the topic, one for drawing up the presentation and one or two for giving the presentation.
The quality of the presentation will be infl uenced by how well the learners work together. Differentiation
might also be achieved by giving different groups, different topics

Section 3: Classroom practice

14 Cambridge IGCSE and Cambridge O Level Computer Science

• wall displays. Again, you could assign different roles to learners. This activity can enable learners
who have a good visual sense to do well, but they will need the help of those who have a good
understanding of computer science

• worksheets. You can produce worksheets (for example on designing logic circuits, writing algorithms
and writing programs) aimed at different abilities, or ones which include extension questions.

• brainstorming. You can target questions. You might also ask particular learners to lead the
brainstorming, others to write up the ideas and others to produce mind maps based on the ideas.

Section 4: Preparing learners for fi nal assessment

15 Cambridge IGCSE and Cambridge O Level Computer Science

Section 4: Preparing learners for fi nal assessment

4.1 Use of past papers, mark schemes and principal examiner
reports

It is important that learners should be familiar with the format and requirements of the two examination
papers. They should not come as a surprise, as lack of familiarity can result in learners making mistakes. For
instance, learners would disadvantage themselves by not completing the pre-release programming tasks
before sitting the Paper 2 examination.

4.1.1 Past papers
These directly illustrate the requirements of the exam. Learners get to know the format of the exam, the
type of questions asked and the style and type of command words used in different questions.

There are many ways in which past papers can help revision.

• For practice: This is useful to help learners assess whether they know and understand the subject
matter or alternatively to identify gaps in their knowledge. Setting a whole paper is good practice for the
examinations as learners also gain experience of working in exam conditions and within time constraints.
You do not always have to use the whole paper. For Paper 2, for example, you could set either section A
or section B and reduce the time accordingly to 45 or 60 minutes.

• As a focus for revision: You can see what level of detail is expected and this will help learners work out
how much they need to know about different topics.

• Understanding what the examiner will be looking for: Ask learners to try marking someone else’s
response to a question to understand how an examiner will look at the answer. This will also enable
them to see how others approach the same question.

A good number of past papers will be available over time on Teacher Support http://teachers.cie.org.uk as
there are several variants of Papers 1 and 2 in each exam series.

4.1.2 Mark schemes
Probably the best way to use mark schemes is to set past questions (either single questions or whole
papers) as a test for learners and check how well they have done by referring to the mark scheme. You
might, sometimes, give them to learners to mark their own work or even each other’s. You could also give
them one past structured question part and the mark scheme on that question part and then ask them to
write a similar question part and a corresponding mark scheme.

4.1.3 Principal examiner reports
These reports, found on Teacher Support http://teachers.cie.org.uk contain information on how candidates
have performed in both examination papers. They give guidance on what examiners were looking for in
each question, as well as which questions candidates have performed well on and any common mistakes
and points of confusion. The reports are useful for both teaching and revision as you can pick up tips to help
improve learners’ understanding and exam performance.

Section 4: Preparing learners for fi nal assessment

16 Cambridge IGCSE and Cambridge O Level Computer Science

4.2 Paper 1 – theory of computer science
This is a compulsory question paper, consisting of short-answer and structured questions set on Section 1
of the syllabus content. All questions are compulsory. Learners will answer on the question paper.

Most questions will not revolve around pure recall. Learners will be expected to apply their knowledge to a
real situation, for example using binary digits for a digital alarm clock display.

4.3 Paper 2 – problem solving and programming
This is a compulsory question paper, consisting of short-answer and structured questions set on Section
2 of the syllabus content. All questions are compulsory. Candidates will answer on the question paper. 20
of the marks in this paper are from questions set on tasks provided in the Paper 2 Problem-solving and
Programming pre-release material.

Teachers need to be aware that in order to prepare their candidates for this paper, they should plan for
suffi cient practical sessions within their lesson timetable and teach the contents of the section in a largely
practical way. Learners will be expected to be able to program in a high-level programming language to be
chosen by the Centre. The programming language should be procedural.

There will be some examining of knowledge with understanding, but most of the credit will be for using
techniques and skills to solve problems. The examination questions will require candidates to have practical
programming experience, including writing their own programs, executing (running), testing and debugging
them. Knowledge of programming language syntax will not be examined; in all cases the logic will be more
important than the syntax.

The Paper 2 Problem-solving and Programming pre-release material will be made available the January
before the June examination, and the July before the November examination. It will also be reproduced in
the question paper. Learners are not permitted to bring any prepared material into the examination.

Teachers are advised to encourage their learners to develop solutions to tasks using a high-level
programming language(such as Visual Basic, Pascal/Delphi or Python). The purpose of the pre-release
material tasks is to direct learners to some of the topics which will be examined in Paper 2. Teachers are
expected to incorporate these tasks into their lessons and develop the appropriate skills. 20 of the marks in
this paper are generated by questions testing these skills.

4.4 Command words used in examination questions
Most ‘questions’ do not end with a question mark but instead use a word that tells the learner what they
need to do. For example, ‘Explain’, Describe’, ‘State’, ‘Give’ and ‘Give two differences between’. These
words, often called command words, need to be read carefully by the learner, who needs to become
familiar with exactly what they mean.

Many command words or phrases are self-explanatory for example:

• draw a line

• convert

• calculate

• show your working

• write an algorithm

• locate errors and suggest corrections

• complete a trace table/query-by-example grid

Section 4: Preparing learners for fi nal assessment

17 Cambridge IGCSE and Cambridge O Level Computer Science

Other command words may need to be explained to learners. You will need to provide learners with
questions, throughout the course, that use these command words appropriately and give them feedback on
their answers that will help them gradually to learn the meaning of each one.

Name this usually requires a technical term or its equivalent. For example ‘name this type of
signal.’

Describe Means no more than it says: ‘Give a description of...’. So, ‘Describe a type of data
entry error’ requires a description of an error for example
‘a transcription error occurs when character(s) are mistyped by a person entering
data’.

Explain This creates major diffi culties for many candidates. A reason or interpretation must
be given, not a description. The term ‘Describe’ answers the question ‘What?’ the
term ‘Explain’ answers the question ‘Why?’.

Using examples Answers to questions involving this type of phrase must follow the instructions.
‘Describe, with an example, a type of data entry error.’ requires a description of an
error with an accompanying example; for example ‘a transcription error occurs when
character(s) are mistyped by a person entering data e.g. a date of birth is entered as
06/06/9002 instead of 06/06/2009’.

State/Give ‘State’ or ‘give’ fall short of describing and amount to no more than making bullet
points e.g. ‘State two differences between Flash memories and CD-RWs.’ ...’Flash
memory is solid state, CD/RW is optical.’

Benefi t or drawback A benefi t is simply the good outcome of an action or incident. A drawback is a bad
outcome of an action or an incident.

Advantage or
disadvantage

When asked to give an advantage or disadvantage, you will need to go a little
further than just stating a good/bad outcome and offer some explanation as to
why, providing an opposite that you can compare it to. For example, in answer to
the question ‘Give one advantage of writing code in high-level language’, you might
answer that ‘It is easier for a programmer to understand than code written in a low-
level language’. This helps defi ne the advantage more clearly and gives it a context.
Of course the same principle will apply if you are stating a disadvantage.

What your learners
Can do in the
examination

1. Read the question.

2. Understand the type of instruction you are being given.

3. If the question makes use of a specifi c scenario then make sure that all your
answers are relevant to that scenario.

4. Decide on the information required but remember that many answers will
require more than just a single word or a short phrase. If you have fi nished your
examination well before the time allotted, you may have fallen into this trap.

5. Always use correct technical terms and avoid the use of brand names. Write
about using a database management system to solve a problem rather than
using ‘Access’.

6. Decide how much information is required.

 – use the instructions for example ‘declare two variables.’

 – look at the marks awarded. For example, ‘Describe how the sensors and the
microprocessor are used to maintain the correct conditions in the fi sh tank.’
[4], will require 4 points.

Section 5: Resources

18 Cambridge IGCSE and Cambridge O Level Computer Science

Section 5: Resources

5.1 Teacher support
• Access to past papers, mark schemes and examiner reports.

• The current syllabus and syllabus updates.

• A searchable resource list.

• Schemes of work for each of the units.

• Answers to frequently asked questions.

• A discussion forum, moderated by a senior examiner.

• Application support booklets.

• Community resources which include resources teachers are prepared to share.

• Details about upcoming events and training sessions. Visit Teacher Support at http://teachers.cie.org.uk

5.2 Finding resources
Many resources can be found on Teacher Support. This includes a searchable resource list of published text
books, syllabus documents and specimen papers, a scheme of work and links to websites.

5.2.1 Endorsed and recommended textbooks
Endorsed and recommended textbooks are available in our resource lists. When a title has been endorsed
it means that it has been written to closely follow the qualifi cation it related to, and is therefore suitable
to be used as teaching material for those specifi c subjects. Recommended titles are useful as a reference
resource when teaching or studying the subject but which have not been written specifi cally for the
qualifi cation they are linked to.

At the time of writing the following endorsed titles are being rewritten for the IGCSE/OL Computer Science
Syllabus and are due to be published autumn 2014:

Cambridge IGCSE Computer Science Revision Guide, CUP India, (due 2015), D. Watson and H Williams

Cambridge IGCSE Computer Science, CUP, 2014, R Morgan, D. Scott and S. Lawrey forthcoming 2015

Cambridge IGCSE Computer Science, Hodder Education, 2015, D. Watson and H Williams

For an up-to-date list of endorsed and recommended titles please see Teacher Support.

5.2.2 Creating and sharing resources
Teachers within a department will fi nd it useful to store resources centrally, perhaps on a shared folder on
your intranet. This might contain:

• multiple-choice questions on particular topics

• sets of questions on particular topics

• sets of programming exercises at differing levels

Section 5: Resources

19 Cambridge IGCSE and Cambridge O Level Computer Science

• quizzes

• computer science crosswords

• video resources (e.g. items from BBC Click, clips from YouTube)

• fi lmed presentations given by learners.

Items can be added to (and deleted from) the shared departmental folder over time.

You can also share resources with other teachers. One way you can do this is through the community
resources on Teacher Support.

5.2.3 Adapting resources
Past examination papers can be found on Teacher Support. You can use whole papers or parts of papers for
your course.

Adapting resources is important in computer science as the subject matter is constantly changing. This is
particularly important in terms of input devices, output devices, media and applications. You could provide
your learners with current video clips, short programs and ask them to design questions. You could, for
instance, tell them that the fi rst question has to test knowledge, the second understanding and the third
evaluation. This will help reinforce the skills they need to develop and the meaning of command words.

5.3 Training and professional development for teachers
5.3.1 Online training
Online training is occasionally available to Cambridge schools usually on a rolling schedule. Check the
Cambridge website events tab to see when courses are running and to register.

Online tutor-led

Where available, these courses are led by a Cambridge expert. They focus on classroom practice. Teachers
follow a three-unit programme over six weeks and can interact and share resources with teachers from
other schools. Teachers on these courses often build up lasting links with their fellow teachers.

Online webinars

Where available these seminars are led over a short period by an expert and focus on specifi c issues such
as syllabus changes or the recent examination session.

5.3.2 Face-to-face training
We run an extensive programme of short professional development courses across the world for teachers
at Cambridge schools. Most workshops are run by a Cambridge trainer. These courses offer teachers the
chance to update their knowledge, learn new skills and network with other teachers. Please check the
Cambridge website events tab to see when courses are running and to register: www.cie.org.uk/events

5.3.3 Professional development for teachers
We also offer professional qualifi cations for teachers who want to develop their thinking and practice.

Learn more about the Cambridge International Certifi cate for Teachers and Trainers and the Cambridge
International Diploma for Teachers and Trainers at: www.cie.org.uk/qualifi cations/teacher

Appendices

20 Cambridge IGCSE and Cambridge O Level Computer Science

Appendices

Appendix A: Sample long-term plan

Appendix B: Sample scheme of work for Unit 2: Numbers, processors and operating systems

Appendix C: Sample scheme of work for Unit 8: Programming concepts

Appendix D: Sample lesson plan 1: computer architecture and the fetch-execute cycle

Appendix E: Sample lesson plan 2: programming concepts

Appendix F: Sample lesson plan template

Appendix A: Sample long-term plan

21 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix A: Sample long-term plan

This plan is based on a two year IGCSE/OL course, with the two examination papers being taken in the sixth
and fi nal term. It is a good idea to teach units addressing Paper1 and Paper2 in parallel, to balance theory
with practical activity.

The units within the scheme of work (with suggestions for time allocations, based on a total allocation of
about 130 hours) are:

Unit 1: Introduction to computer systems (15 hours)

Unit 2: Numbers, processors and operating systems (10 hours)

Unit 3: Data communications and networking (12–15 hours)

Unit 4: Data integrity and security (10 hours)

Unit 5: Binary logic (15 hours)

Unit 6: Practical problem solving – structure diagrams, algorithms and fl owcharts (12 hours)

Unit 7: Practical problem solving – pseudocode (12 hours)

Unit 8: Programming concepts (12 hours)

Unit 9: Databases (9 hours)

Unit 10: Use of pre-release material (20–25 hours)

Term 1

Paper 1 Paper 2

Introduction to computer systems

Focus on developing skills of knowledge with
understanding

Introduction to Practical problem solving

Introduction to programming

Term 2

Paper 1 Paper 2

Numbers, processors and operating systems

Focus on developing skills of knowledge with
understanding

Introduction to Practical problem solving,
algorithms

Programming concepts

Term 3

Paper 1 Paper 2

Data communications and networking

Test

Department review of learners’ progress

Introduction to Practical problem solving,
fl owcharts and pseudocode

Programming concepts
Test

Department review of learners’ progress

Appendix A: Sample long-term plan

22 Cambridge IGCSE and Cambridge O Level Computer Science

Term 4

Paper 1 Paper 2

Review of previous year’s work

Data integrity and security

Department to identify learners who need extra
support

Review of previous year’s work

Databases

Department to identify learners who need extra
support

Term 5

Paper 1 Paper 2

Binary Logic

Focus on developing examination techniques

Learners to work through past papers and to draw
up examination questions

Use of pre-release material

Focus on developing examination techniques

Learners to work through past papers to draw up
examination questions

Term 6

Paper 1 Paper 2

Revision
Practice exam papers

Department review scheme of work for next year

Use of pre-release material

Revision
Practice exam papers

Department review scheme of work for next year

Appendix B: Sample scheme of work Unit 2

23 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix B: Sample scheme of work Unit 2

Numbers, processors and operating systems
Recommended prior knowledge

In order to understand the role of an operating system, learners should have had practical experience of
using at least one operating system with a Graphical User Interface (GUI). It is recommended that learners
should have studied Unit 1 before starting this unit.

Context

This unit looks at the way in which numbers are represented within a computer system, the structure of the
central processing unit and its functions, and the role of the operating system in managing the components
of a computer system and interactions with the user.

Outline

This unit starts with binary and hexadecimal representation of numbers, leading to the von Neumann
model of a computer system and the concept of a computer. This is illustrated practically by learner use
of the Little Man Computer (LMC). The role of operating systems is then considered, including control of
peripherals and the user interface. Learners will not be expected to know detail of any specifi c operating
system.

Suggested teaching time

Based on a total time allocation of 130 contact hours for this Cambridge IGCSE/O Level Computer Science
course, it is recommended that this unit should take about 10 hours.

A
p

p
en

d
ix B

: S
am

ple schem
e of w

ork U
nit 2

24
C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

1.1.1 • understand binary notation
and to convert denary
numbers to and from binary

Teacher presentation to introduce the concepts of
binary notation, e.g. using an automatic binary counter;
binary number cards available (with worksheets etc.).
(W)

Learners convert denary numbers into binary and
binary numbers into denary (I); reinforce with a game
such as the Cisco binary game. (G) This provides
formative assessment of understanding.

Learners answer previous exam/textbook questions
on binary representation. (I)

Binary counter – for example:
www.mathsisfun.com/binary-decimal-
hexadecimal-converter.html

Binary numbers at Computer Studies
Unplugged:
http://csunplugged.org/binary-numbers

Cisco binary game:
http://forums.cisco.com/CertCom/game/
binary_game_page.htm

Cambridge IGCSE Computer Studies Revision
Book Chp 11.4 – sample questions in 11.6

1.1.1 • recognise the use of binary
numbers in computer
systems

Teacher presents the concept of the byte; class
discussion about how the byte is used to measure
memory size by introducing the concept of kb, Mb,
Gb, Tb. (W)

Class brainstorm to refl ect on capacity of commonly
found elements of computer systems such as hard
disk drives, RAM, DVD, USB fl ash drives etc. (refer
back to Unit 1 – types of memory). (G)

Simple comparisons at
www.bbc.co.uk/schools/gcsebitesize/ict/
hardware/1datastoragerev2.shtml

Useful reinforcement material:
http://computer.howstuffworks.com/
bytes.htm

1.1.2 • understand hexadecimal
notation and to convert
hexadecimal integers to and
from binary and denary

• understand the signifi cance
of hexadecimal in computer
systems

Teacher presentation on hexadecimal notation and its
relationship to binary notation. Demonstration of the
conversion of binary and denary to hexadecimal. (W)

Learners convert positive hexadecimal integers to and
from binary and to and from denary. (I)

Class brainstorm to show understanding of the
reasons for choosing hexadecimal to represent
numbers, e.g. those stored in registers and main
memory. (W)

Learners answer previous exam/textbook questions
on hexadecimal representation. (I)

Hexadecimal counter – for example:
www.mathsisfun.com/binary-decimal-
hexadecimal-converter.html

Cambridge IGCSE Computer Studies Revision
Book Chp 11.5 – sample questions in 11.6

A
p

p
en

d
ix B

: S
am

ple schem
e of w

ork U
nit 2

25
 C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

1.3.2
1.1.1
1.1.2

• show understanding of the
basic Von Neumann model
for a computer system and
the stored program concept

• describe the stages of the
fetch-execute cycle

• recognise the use of binary in
computer registers

• identify current uses of
hexadecimal e.g. assembly
languages and machine code,
debugging etc.

Teacher presents basic concepts of computer
architecture, including registers, and the fetch-execute
cycle followed by demonstration via projector of the
Little Man Computer (LMC). (W)

Learners carry out simple low level tasks using LMC
software – paired work is probably most effective. (P)

Differentiation can be achieved by giving able learners
more challenging tasks (examples available in quoted
resources and by searching for the LMC tasks using
e.g. Google).

Notes/presentation on computer architecture:
http://web.eecs.utk.edu/research/
cs100modules/module1/index.html

Notes and animations of fetch-execute cycle:
www.eastaughs.fsnet.co.uk/cpu/
execution-cycle.htm

http://comminfo.rutgers.
edu/~muresan/201_JavaProg/09LMC/
lmcScan.PDF

Little Man Computer download:
http://gcsecomputing.org.uk/lmc/lmc.html

1.3.6 • describe the purpose of an
operating system

• show understanding of the
need for interrupts

Teacher presentation to include:

• the idea of system software as different from
applications software

• general tasks and facilities of an operating system
– for processor management, it is helpful to
demonstrate Windows Task Manager

• the role of the operating system (OS) in fi le
management

• how peripheral devices, such as keyboards and
printers, must be controlled and responded to by
the operating system

• how communication between the computer
and peripherals must be controlled and errors
detected. (W)

Learners (paired/grouped) to research:

Cambridge IGCSE Computer Studies
Coursebook pp. 92–4
Cambridge IGCSE Computer Studies Revision
Book 13

Introduction to operating systems:
http://gcsecomputing.net/wp-content/
uploads/2012/01/OCR%20A451%20
2.1.2%20CPU%20-%20Summary.pdf

Several pages describing operating systems
and their functions:
www.howstuffworks.com/operating-
system1.htm

Windows, Linux, Android could be used as
examples

A
p

p
en

d
ix B

: S
am

ple schem
e of w

ork U
nit 2

26
C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

• buffer
• polling
• interrupts
• handshaking
• checksum.

Learners use their fi ndings to create a short role play
activity that demonstrates how each of these works
(G). Learners need to make their own notes on each of
these after they have been acted out. (I)

Class brainstorm to review learners’ previous
experience of operating systems with graphical user
interfaces (GUI), and introduce the idea of a command
line interface. (W)

Discuss the main differences between command line
interfaces and GUIs and their respective advantages
and disadvantages. (G/P)

Pairs of learners devise their own quiz questions (and
answers) on this unit (P); teacher selects one or two
quizzes to test understanding of operating systems
and their function. (W)

Cambridge IGCSE Computer Studies
Coursebook pp. 102–5

Theory notes and activities on buffers (and
drivers):
www.teach-ict.com/gcse_new/
computer%20systems/buffers_drivers/
home_buffers.htm

Old but still relevant article that compares
interrupts with polling:
www.atarimagazines.com/compute/
issue149/60_Interrupts_made_easy.php

Cambridge IGCSE Computer Studies
Coursebook pp. 98–100
Theory notes, activities and quizzes on user
interfaces:
www.teach-ict.com/gcse_computing/
ocr/213_software/user_interface/home_
user_interface.htm
Notes on user interfaces:
www.igcseict.info/theory/1/uis/index.html
Quizzes to test understanding at:
www.teach-ict.com/gcse_computing/
gcse_computing_quizzes.htm

Appendix C: Sample scheme of work 2, Unit 8

27 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix C: Sample scheme of work 2, Unit 8

Unit 8: Programming concepts
Recommended prior knowledge

Learners need to have studied Units 6 and 7 before starting this unit.

Context

This unit completes the process of converting an algorithm from an abstract idea to a working computer
program. A range of different types of programming languages exist; this unit looks at the different levels of
language and the processes for translation into machine code. It also provides learners with opportunities to
convert algorithms into functional programs. Candidates are not expected to have expertise in any specifi c
computer language but to understand the basic principles of syntax. Examination questions that require
learners to write a program will include the syntax that needs to be used.

It is recommended that learners have the opportunity to write programs using two or three different
programming languages. Examples might include Visual Basic, Delphi/Pascal, Python, Scratch and a control
programming language. References to some of these are given in the resource lists below.

Outline

Following consideration of the concepts of sequence, selection and repetition, writing an algorithm as a
fl owchart and in pseudocode, and identifying and correcting errors in pseudocode, this unit looks at the
need for high-level and low-level languages. It considers the use of assemblers, interpreters and compilers
for translation of the code written by a programmer into machine code that can be used by the processor.

Learners have the opportunity of using a number of different high-level languages to produce working
programs, to extend their knowledge of iteration by the use of FOR…NEXT, REPEAT…UNTIL and WHILE…
DO loops and to incorporate the use of arrays into their programming.

Teaching time

Based on a total time allocation of 130 contact hours for this IGCSE course, it is recommended that this unit
should take about 15 hours.

A
p

p
en

d
ix C

: S
am

ple schem
e of w

ork 2, U
nit 8

28
C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

1.3.7 • show understanding of the
need for both high-level and
low-level languages

• show understanding of the
need for assemblers when
translating programs written
in assembly language

Brainstorm the nature of a program and its
requirements (data input and output; manipulation
of data of various types and structures;
sequence, selection, repetition and subprogram
intercommunication; the concepts of totals and
counting). (W)

Teacher introduces learners to different types of
programming languages by considering:
• historical origins of computer programming in

machine-specifi c types of language (machine
language and assembly language)

• the characteristics of these languages
• the need for an assembler translation program for

assembly language
• why they are still used for certain applications. (W)

Cambridge IGCSE Computer Studies
Coursebook pp. 255–9

Cambridge IGCSE Computer Studies Revision
Book Chp 8.1

An introduction to different levels of
programming language:
www.teach-ict.com/gcse_computing/
ocr/216_programming/programming_
languages/home_programming_
languages.htm

Extension work – Tutorial on programming a
microcontroller, illustrating the suitability of
assembly language for dealing with input and
output devices:
www.mstracey.btinternet.co.uk/
pictutorial/picmain.htm

• show understanding of the
need for compilers when
translating programs written
in a high-level language

• show understanding of the
use of interpreters with high-
level language programs

Learners research the characteristics of high-level
languages; the need for compiler and/or interpreter
translation programs for these languages; why they
are preferred for many applications. (G)/(I)

Cambridge IGCSE Computer Studies
Coursebook pp. 257–9

Introduction to high-level language:
www.teach-ict.com/gcse_computing/
ocr/216_programming/programming_
languages/miniweb/pg4.htm

Introduction to translation programs for high-
level language:
www.teach-ict.com/gcse/software/
programming_languages/miniweb/
pg6.htm

A
p

p
en

d
ix C

: S
am

ple schem
e of w

ork 2, U
nit 8

29
 C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

Extension work:
• History of compiler writing: http://

en.wikipedia.org/wiki/History_of_
compiler_writing

• First high-level language to have a
complete compiler:

• http://en.wikipedia.org/wiki/Fortran
• The fi rst programming language to express

operations using English-like statements:
• http://en.wikipedia.org/wiki/

FLOW-MATIC

2.2.1 • understand and use the
concepts of sequence,
selection, repetition, totalling
and counting

• use predefi ned procedures/
functions

Learners investigate programming concepts using a
number of different easy-to-use high-level computer
programming languages

Introduction to programming with Scratch – teacher
presentation to cover:
• different data types and their declaration;
• iteration, counting and totalling – implementation

of some examples previously devised as
pseudocode representations;

• calling procedures/functions/sub-routines. (W)

Followed by a range of learner practical activities (G)/
(I). These can be differentiated by task to provide
appropriate challenge for learners.

Repetition of the previous sequence of activities using
• a control programming language (e.g. GO, Logo,

Flowol)
• a more conventional procedural language such as

V-Basic, Python, Pascal etc.

Scratch – a simple programming language that
makes it easy to create animations, games,
music, interactive stories, etc. without the
need to learn complex syntax:
http://scratch.mit.edu/

Some simple tasks in Scratch:
www.teach-ict.com/programming/
scratch/scratch_home.htm

Control programming:
http://apps.dataharvest.co.uk/
index.php?main_page=product_
info&cPath=2_21_8&products_id=9

Flowol website:
www.fl owol.com/Default.aspx

The Python website:
www.python.org/

Some LOGO websites and ideas:
www.mathcats.com/gallery/
logodownloadinfo.html

A
p

p
en

d
ix C

: S
am

ple schem
e of w

ork 2, U
nit 8

30
C

am
bridge IG

C
S

E
 and C

am
bridge O

 Level C
om

puter S
cience

Syllabus ref Learning objectives Suggested teaching activities Learning resources

2.2.2 • declare the size of one-
dimensional arrays; for
example: A[1:n]

• show understanding of the
use of the index variables in
arrays

• read values into an array
using a FOR … TO … NEXT
loop

Learners write programs from algorithms developed
in unit 7, to read values from a data source (fi le,
data statement, keyboard) into a specifi ed array and
calculate e.g. average, largest, smallest. These will
have been tailored to give appropriate challenge to
learners. (G)/(I)

Notes on arrays (as for Unit 7):
www.teach-ict.com/gcse_computing/
ocr/216_programming/handling_data/
miniweb/pg10.htm

Appendix D: Sample lesson plan 1

31 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix D: Sample lesson plan 1

Computer architecture and the fetch execute cycle

Lesson: Computer architecture and
the fetch-execute cycle

School:

Date: Teacher name:

Class: Number present: Absent:

Teaching Aims • show what happens during the fetch part of the cycle
• show what happens during the execute part of the cycle

Lesson objectives • develop understanding of registers and their uses
• develop understanding of the stages of the fetch-execute cycle

Syllabus assessment
objectives

• describe the stages of the fetch-execute cycle, including the use of
registers

Vocabulary,
terminology and
phrases

Program counter (PC)
Memory Address Register (MAR)
Memory Buffer Register (MBR)
Current Instruction Register (CIR)

Previous learning • understanding of the basic Von Neumann model for a computer
system and the stored program concept (program instructions and
data are stored in main memory and instructions are fetched and
executed one after another)

Anticipated learner
problems

• some learners may not understand the previous learning as it is one
of the more challenging parts of the syllabus

Solutions to the
problems

• use group work to reinforce the principles
• recap and demonstrate using Little Man Computer

Resources • http://gcsecomputing.org.uk/lmc/lmc.html
• Diagram used for last lesson showing Von Neumann architecture

but with names of registers removed
• Cards with stages of the fetch-execute cycle for group work
• Laminated cards to write values on for register role play

Appendix D: Sample lesson plan 1

32 Cambridge IGCSE and Cambridge O Level Computer Science

Plan lesson content

Planned
timings

Planned activities

10 minutes

Brief recap of the basic Von Neumann model for a computer system and the
stored program concept.

Revision of register names and their purposes.

10 minutes
Demonstration of the fetch-execute cycle with a short program.

Using http://gcsecomputing.org.uk/lmc/lmc.html or similar.

10 minutes
Working in pairs work through a similar short program.

Using http://gcsecomputing.org.uk/lmc/lmc.html or similar.

10 minutes
Working in small groups, arrange cards in the correct order for the fetch
execute cycle.

10 minutes
Working individually, work through one/both of the programs writing down the
contents of the registers.

Optional if time
permits

Role play of fetch-execute cycle for a short program, with some learners taking
the parts of the registers.

Plan consolidation

Planned
timings

Planned activities

10 minutes Quiz, on register names and uses.

Appendix D: Sample lesson plan 1

33 Cambridge IGCSE and Cambridge O Level Computer Science

Plan assessment

Topic Teacher Notes

Peer or self-
assessment

Self-assessment after quiz

Homework
Provision of a short program to follow the changes made to specifi c registers
with, for example CIR and MAR, during the fetch-execute cycle

Exam question
Explain, with examples, what the PC and the MBR are used for in the fetch-
execute cycle

Additional information

Differentiation – how
do you plan to give
more support? How do
you plan to challenge
the more able learners?

 Refl ection and evaluation

Refl ection
Were the lesson
objectives realistic?
What did the learners
learn today?
What was the learning
atmosphere like?
Did my planned
differentiation work well?
Did I keep to timings?
What changes did I make
from my plan and why?

Use the space below to refl ect on your lesson. Answer the
most relevant questions from the box on the left about your
lesson.

Summary evaluation

What two things went really well (consider both teaching and learning)?
1:
2:
What two things would have improved the lesson (consider both teaching and learning)?
1:
2:
What have I learned from this lesson about the class or individuals that will inform my next
lesson?

Appendix E: Sample lesson plan 2

34 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix E: Sample lesson plan 2

Programming concepts

Lesson: Computer architecture and
the fetch-execute cycle

School:

Date: Teacher name:

Class: Number present: Absent:

Teaching Aims • introduce programming ideas in a fun, visual way
• learners to have a positive experience of program development

Lesson objectives • develop understanding of programming concepts
• develop practical use of programming concepts

Syllabus assessment
objectives

• understand and use the concepts of sequence, selection,
repetition, totalling and counting

Vocabulary,
terminology and
phrases

sequence
selection
repetition
totaling
counting

Previous learning • understand and use pseudocode

Anticipated learner
problems

• some learners may have attempted programming before, others
may be new to the concept

Solutions to the
problems

• use of Scratch to introduce idea of program
• working in pairs to start with

Resources • Scratch http://scratch.mit.edu/
Some simple tasks in Scratch: www.teach-ict.com/
programming/scratch/scratch_home.htm

Appendix E: Sample lesson plan 2

35 Cambridge IGCSE and Cambridge O Level Computer Science

Plan lesson content

Planned
timings

Planned activities

10 minutes
Brief recap of the concepts of sequence, selection, repetition, totalling and
counting.

10 minutes
Demonstration of sequence, selection, repetition, totalling and counting, using a
pre-prepared Scratch program.

10 minutes
Working in pairs to load and run the program, then change some values. For
example, the number of repeats.

10 minutes Working in pairs, develop and test a similar program.

10 minutes Working individually, identify which instructions perform each action.

Optional if time
permits

Demonstration of individual programs to the class.

Plan consolidation

Planned
timings

Planned activities

10 minutes Individuals developing a new program from a given task

Appendix E: Sample lesson plan 2

36 Cambridge IGCSE and Cambridge O Level Computer Science

Plan assessment

Topic Teacher Notes

Peer or self-
assessment

Self-assessment after program writing.

Homework
Provide two examples of sequence, selection, repetition, totalling and counting
using Scratch.

Exam question Explain, using examples, the difference between totalling and counting.

Additional information

Differentiation – how
do you plan to give
more support? How do
you plan to challenge
the more able learners?

 Refl ection and evaluation

Refl ection
Were the lesson
objectives realistic?
What did the learners
learn today?
What was the learning
atmosphere like?
Did my planned
differentiation work well?
Did I keep to timings?
What changes did I make
from my plan and why?

Use the space below to refl ect on your lesson. Answer the
most relevant questions from the box on the left about your
lesson.

Summary evaluation

What two things went really well (consider both teaching and learning)?
1:
2:
What two things would have improved the lesson (consider both teaching and learning)?
1:
2:
What have I learned from this lesson about the class or individuals that will inform my next
lesson?

Appendix F: Sample lesson plan template

37 Cambridge IGCSE and Cambridge O Level Computer Science

Appendix F: Sample lesson plan template

Lesson topic

Lesson: School:

Date: Teacher name:

Class: Number present: Absent:

Teaching Aims

Lesson objectives

Syllabus assessment
objectives

Vocabulary,
terminology and
phrases

Previous learning

Anticipated learner
problems

Solutions to the
problems

Resources

Appendix F: Sample lesson plan template

38 Cambridge IGCSE and Cambridge O Level Computer Science

Plan lesson content

Planned
timings

Planned activities

Plan consolidation

Planned
timings

Planned activities

Appendix F: Sample lesson plan template

39 Cambridge IGCSE and Cambridge O Level Computer Science

Plan assessment

Topic Teacher Notes

Peer or self-
assessment

Homework

Exam question

Additional information

Differentiation – how
do you plan to give
more support? How do
you plan to challenge
the more able learners?

 Refl ection and evaluation

Refl ection
Were the lesson
objectives realistic?
What did the learners
learn today?
What was the learning
atmosphere like?
Did my planned
differentiation work well?
Did I keep to timings?
What changes did I make
from my plan and why?

Use the space below to refl ect on your lesson. Answer the
most relevant questions from the box on the left about your
lesson.

Summary evaluation

What two things went really well (consider both teaching and learning)?
1:
2:
What two things would have improved the lesson (consider both teaching and learning)?
1:
2:
What have I learned from this lesson about the class or individuals that will inform my next
lesson?

Cambridge International Examinations
1 Hills Road, Cambridge, CB1 2EU, United Kingdom
Tel: +44 (0)1223 553554 Fax: +44 (0)1223 553558
Email: info@cie.org.uk www.cie.org.uk

® IGCSE is the registered trademark of Cambridge International Examinations.

© Cambridge International Examinations November 2014 v1

9156124110

